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Abstract

Purpose – The purpose of this paper is to provide an axisymmetric model of tube hydroforming
using a Fourier Series based finite element method.

Design/methodology/approach – Fourier series interpolation function, which considerably
reduces the size of the global stiffness matrix and the number of variables, is employed to
approximate displacements. The material of the tube is assumed to be elastic-plastic and to satisfy the
plasticity model that takes into account the rate independent work hardening and normal anisotropy.
Numerical solution obtained from an updated Lagrangian formulation of the general shell theory is
employed. The axial displacement stroke (a.k.a. axial feed) during tube hydroforming is incorporated
using Lagrange multipliers. Contact constraints and boundary friction condition are introduced into
the formulation based on the penalty function, which imposes the constraints directly into the tangent
stiffness matrix. A forming limit curve based on shear instability and experimental measurements are
used as fracture criteria.

Findings – The results obtained from this new formulation are compared against the nonlinear finite
element code ABAQUS and experimental measurements for isotropic and transversely anisotropic
tube materials. The hoop and axial strains predicted with AXHD code compared excellently with those
from ABAQUS FEM code using plane stress axisymmetric (SAX1) and four-node shell (S4R) elements.
However, in the case of aluminum, the numerically predicted maximum hoop strain underestimated
the actual hoop strain measured from the tube bulging experiment.

Practical implications – The axisymmetric hydroforming program (AXHD) developed in this
work is very efficient in simulating the free-forming stage of the tube hydroforming process under
simultaneous action of internal pressurization and displacement stroke.
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Originality/value – Although Fourier Series based finite element method has been used in metal
forming, the extended application presented in this paper is novel in the finite element analysis of tube
hydroforming.

Keywords Steel, Finite element analysis, Metals, Fourier transforms, Material-removal processes

Paper type Research paper

Nomenclature

~
D ¼ strain rate tensor

~
L ¼ fourth-order elastic tensor
E ¼ Young’s modulus
h ¼ plastic hardening parameter
n ¼ strain hardening exponent
R ¼ normal anisotropy parameter
t ¼ thickness of the shell
u, w ¼ incremental displacements of the

mid-surface of the shell
l1; l2 ¼ principal stretches of the shell
s7

~
¼ Jaumann rate of stress tensor

~
_s ¼ material time derivative of stress

tensor

~
s ¼ stress tensor
�s ¼ effective stress
�1 ¼ effective strain
t ¼ time
n ¼ Poisson ratio
sy ¼ initial yield strength of material
1r ¼ circumference strain for straight

segment
10
r ¼ membrane component of

circumference strain for straight
segment

sr ¼ circumference stress for straight
segment

kr ¼ first principal curvature of the tube
1s ¼ axial strain for straight segment
10
s ¼ membrane component of axial strain

for straight segment
ss ¼ axial stress for straight segment
ks ¼ second principal curvature of the

tube
p ¼ internal pressure
T ¼ tension
l ¼ Lagrange multipliers
n̂ ¼ unit outward normal to the

mid-surface of shell
u* ¼ displacement stroke
ti ¼ frictional traction force
r i ¼ current radius of the deformed tube
a ¼ stress ratio
r ¼ strain ratio
b ¼ 1 þ R 1=ð12aÞ

a ¼ order of Yield function ( ¼ 2)
1*1 ¼ maximum principal strain at shear

instability
1*1p ¼ maximum principal strain from

plane strain test
( ), ¼ indicates derivative with respect to a

parameter

1. Introduction
Hydroforming offers a way to cut material and manufacturing costs while improving
product performance in a variety of applications. Advantages include weight reduction
due to improved part design, part consolidation where a single component replaces an
assembly, reduced tooling cost as a result of part consolidation, and improved
structural strength and stiffness of the hydroformed component. Thus, it reduces
tooling, part, and labor costs, while significantly improving product performance
(Anon, 1997).

While numerous variations of hydroforming exist, the basic principle remains the
same: utilize fluid pressure to form a component. Both traditional high-pressure
hydroforming and pressure sequence hydroforming are presented in Longhouse (1998)
and Morphy (1997). Typical Hydroforming sequence is shown in Figure 1, where
internal pressure and axial feed (force or displacement) are applied simultaneously to
improve the material shaping abilities. The process is being used to make a wide range
of complex cylindrical, flat and tubular components. Cylindrical parts include gas
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cylinders, washing-machine drums and cooker cavities. Flat components include auto
body panels, fuel tanks and aerospace parts.

Built on the successful application of finite element method to metal forming
processes (Wang and Budiansky, 1978; Oh, 1982; Nagteggal and Rebelo, 1988; Wang
and Tang, 1988; Kobayashi et al., 1989), explicit finite element method has been used
for the simulation of stamping and hydroforming process by Ni (1994) and to bulging
of sheet metals by Hu et al. (1997). Hsu and Chu (1995) applied explicit finite element
method to a sheet metal operation involving punch stretching, drawing and
hydroforming. Berg and Hora (1996) developed a specific hybrid shell to simulate the
hydroforming of sheet and tubular structures using an explicit formulation. Noh and
Yang (1998) derived an upper bound solution for the hydroforming of arbitrarily
shaped boxes from blank sheets.

Using the explicit finite element code LS-Dyna3D, Srinivasan et al. (1998)
provided additional correlation of experimental and simulation results for tube
hydroforming, and Liu et al. (1998) provided analytical and experimental
examination of tube hydroforming limits. Kaya et al. (2002) performed plane strain
analysis of crushing and expansions of tube cross-sections using the
two-dimensional implicit finite element code DEFORM 2D. Kim et al. (2002)
developed a rigid-plastic finite element method for the analysis of tube
hydroforming process. Other numerical analyses of tube hydroforming performed
recently can be found in Papelnjak (2004), Hama et al. (2003, 2004a, b), Lin and
Kwan (2004), Hwang and Altan (2003, 2004) and Lang et al., 2004).

Selection of load (internal pressure) and end condition (axial feed) will affect the
formability of a metallic tube in the tube hydroforming process. The influence of these
parameters was studied by Imaninejad et al. (2004), Ray and MacDonald (2004),
Aue-U-Lan et al. (2004), Johnson et al. (2004), Hsu (2003) and Fann and Hsiao (2003).

Most recently, researchers studied failure phenomenon (wrinkling, bursting,
necking, etc.) due to local instability during tube hydroforming. Prediction of failure
initiation using finite element method and applying stability criteria was investigated
by Aydemir et al. (2005), Kulkarni et al. (2004), Kim and Kang (2004) and Kim et al.
(2003, 2004).

Figure 1.
Force-controlled

hydroforming process
derived from:

siempelkamp pressen
systeme GmbH & Co
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Miller et al. (2001a) experimentally investigated the bend-stretch-pressure forming
of aluminum extruded-tubes and found that tension and modest levels of
pressurization prevents buckling of the compressed side, reduces springback and
distortion of the bent tube. In support of these experiments, Miller et al. (2001b)
developed a CPU-efficient 2D model for the bend-stretch-pressure forming process,
which assumes that the tube shape and all applied loads are uniform along its length.
Owing to its computational efficiency, they were able to design the process and to
evaluate some possible alternative loading histories, which would result in minimum
distortion and springback of the cross section of the tube after the bending. Corona
(2004) extended the sectional analysis to accommodate more general cross-sections.

In this paper an axisymmetric analysis method is presented for calculating strains
and expansion as the tube is subjected to simultaneous internal pressure and axial
displacement stroke, a.k.a. axial feed. The present method employs some simplifying
assumptions. The principal geometrical assumption is that the representative meridian
of the tube is initially straight. This assumption however could be relaxed by using a
curved, instead of a straight segment to represent the initial geometry of the tube. All
segments making up the meridian are assumed to be relatively thin and of constant
thickness. The deformation of the tube is assumed not to vary along its cross-section,
hence, the analysis could be considered to be an axisymmetric analysis.

The Fourier series based implicit Axisymmetric Hydroforming (AXHD) program is
an extension of the work by Miller et al. (2001b) and Corona (2004). The material of the
tube is assumed to be elastic-plastic and to satisfy the plasticity model that takes into
account rate-independent work hardening and normal anisotropy (Pourboghrat et al.,
2000). Frictional stress at the die-tube interface is assumed to be proportional to the
contact pressure based on Coulomb friction model. By using the virtual work principle
and constitutive equation, the equilibrium equation can be derived. Numerical solution
obtained from an updated-Lagrangian formulation of a general shell theory is
employed. Axial stroke is incorporated into the equilibrium equation using Lagrange
Multiplier technique. The boundary friction condition is introduced into the
formulation in the form of a penalty function, which imposes the constraint directly
into the tangent stiffness matrix. The Newton-Raphson algorithm is used to solve the
nonlinear equations.

If hydroforming technology is to be applied economically, it is essential to have
knowledge of the avoidance of failure cases as well as of the behavior of the tube in the
tool under the compressive stress and forces that are exerted by the machine (i.e. axial
feed). Several failure modes, buckling, wrinkling and bursting are discussed in
Dohmann and Hartl (1996) and Asnafi (1999). To that end, forming limit curve (FLC)
developed based on the onset of shear instability (Lee and Kim, 1989) and experimental
measurements are incorporated into AXHD code as fracture criteria.

In Section 2 of this paper the thin shell model is described. The kinematics
assumptions and principal strain formulations are discussed in Section 3. The
constitutive model and contact algorithm are described in Sections 4 and 5,
respectively. Section 6 describes the equilibrium equation formulations based on the
virtual work principle (VWP) and the application of Newton-Raphson iterative method
to solve the resulting non-linear equations. The flowchart of AXHD program and
fracture criteria is detailed in Sections 7 and 8, respectively. Finally, in Section 9 several
examples are provided in support of the section-analysis finite element model, where
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numerical predictions of the deformed shape, hydroforming pressure, and deformation
strains are compared with experimental measurements and the nonlinear finite
element code ABAQUS.

2. Thin shell theory
Pourboghrat et al. (2000) derived the principal curvatures and stretches of a shell of
revolution undergoing axisymmetric deformation using both total and updated
Lagrangian formulations. For completeness, the basic formulation for updated
Lagrangian theory will be discussed next.

The deformation of the mid-surface of an element will be considered based on thin
shell theory. Figure 2 shows the shell mid-surface at the reference time ot and the
current time t as it bends and stretches.

2.1 Principal curvature and stretch (updated Lagrangian)
After bending and stretching, the principal mid-surface curvature, k1, of a shell element
at the current configuration, t ( ¼ ot þ Dt), could be calculated from the known
information about the element at the reference configuration (time ot, see Figure 2), as
follows:

~
r ¼

~
R þ u

~
Âþ w

~
N̂ ð1Þ

where
~
R is the reference configuration at time ot and u and w are incremental

displacements defined in Figure 2. In equation (1), the unit tangent vector
~
Â and the

unit principal normal vector
~
N̂ to the mid-surface of the reference configuration are

defined as:

~
Â ¼

›
~
R

›S
¼

~
R
;s

ð2Þ

Figure 2.
Shell mid-surface at

reference time ot and
current time t
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~
N̂ ¼

~
Â

;s

K1
or;

~
Â ¼ 2

~
N̂
;s

K1
ð3Þ

where K1 is the centerline curvature at the reference configuration. To calculate the
centerline curvature at current configuration, k1, the unit tangent vector

~
âð¼

~
a=k

~
akÞ

and the unit principal normal vector of the mid-surface of the shell
~
n̂ð¼

~
n=k

~
nkÞ must be

known. Using equation (1), the tangent vector
~
a is calculated as:

~
a ¼

›
~
r

›S
¼

~
r
;s
¼

~
R
;s
þ u;s

~
Âþ u

~
Â

;s
þ w;s

~
N̂þ w

~
N̂
;s

ð4Þ

After substituting from equations (2) and (3) into equation (4), and some re-arranging,
the following expression results:

~
a ¼

›
~
r

›S
¼

~
r
;s
¼ ð1 þ u;s 2 K1wÞ

~
Âþ ðw;s þ K1uÞ

~
N̂ ¼ c

~
Âþ d

~
N̂ ð5Þ

The principal incremental stretch of the mid-surface in the axial direction calculated
from the magnitude of the base vector

~
a in equation (5) is:

l1 ¼ k
~
ak ¼

ffiffiffiffiffiffiffiffi
~
a ·

~
a

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2 þ d 2

p
¼ ½ð1 þ u;S 2 K1wÞ

2 þ ðw;S þ K1uÞ
2�1=2 ð6Þ

The current length of the mid-surface of the shell in the axial direction, ds, is calculated
from the reference length, dS, and l1 as follows:

ds ¼ l1dS ð7Þ

The unit principal normal vector of the surface of the current shell,
~
n̂, is:

~
n̂ ¼

2d
~
Âþ c

~
N̂

l1
ð8Þ

which from equations (5), (6) and (8), shows that
~
n̂ ·

~
â ¼ 0. The current principal

curvature of the shell, k1, could now be found as:

k1 ¼ 2
~
â ·

~
n̂
;s
¼ 2

~
r
;s

·
~
n̂
;s
¼ 2

1

l2
1

~
a ·

~
n̂
;S

ð9Þ

where
~
a is given by equation (4) and

~
n̂
;s

can be derived from equation (8) as:

~
n̂
;S
¼

d
~
n̂

dS
¼

l1 · ðd;S
~
Âþ c;S

~
N̂2 K1c

~
Â2 K1d

~
N̂Þ2 l1;S · ð2d

~
Âþ c

~
N̂Þ

l2
1

ð10Þ

In equation (10), l1;S is assumed to vanish within an element and the above expression
simplifies as:

~
n̂
;S
¼ 2

ðd;S þ K1cÞ
~
Âþ ð2c;S þ K1d Þ

~
N̂

l1
ð11Þ
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After substituting from equations (5), (6) and (11) into equation (9), the current
centerline curvature of the shell, k1, can be found:

k1 ¼
cd;S 2 dc;S þ K1l

2
1

l3
1

ð12Þ

3. Kinematics of the straight segment
Using the updated Lagrangian formulation, exact expressions for membrane strains,
normal vector rotation, and principal curvatures of an axisymmetric shell element were
derived in Section 2 (Shell element model). By using in these expressions the values of
displacements and curvatures of the shell at previous time increment (i.e. t ¼o t), one
would recover the incremental values of strains. However, by using in these
expressions the values of displacements and curvatures of the shell at the initial
time (i.e. t ¼ 0) one would recover the total values of strains. In this paper, the
difference between the total strains at time t (current) and ot (previous) is used to
calculate the incremental strains, i.e. D1 ¼ 1ðY ; tÞ2 1ðY ;o tÞ, where Y corresponds to
the location of a material point on the meridian of the tube.

In the Appendix, based on the kinematics of the mid-surface of the shell (Section 2),
a set of kinematics equations is derived suitable for solving the tube bulging problem
using a number of small deformation increments. The underlying assumption used in
these derivations is that the accumulated error associated with dropping the quadratic
term in the definition of total strain is negligible. The table in the Appendix shows the
magnitude of the error associated with this assumption.

3.1 Kinematics assumptions
For the purpose of modeling, all segments making up the meridian are assumed to be
thin and of constant thickness. To meet the thin shell assumption, the length of the
straight segments should be greater than ten times the thickness. The deformation of
the structural member is assumed not to vary along its cross-section for a given point
on the meridian. Hence, the analysis can be done for a straight meridian parallel to the
axis of the tube, as shown in Figure 3. Nonlinear expressions for incremental
deformation (i.e. strain, displacement, rotation) and curvature will be derived for the
straight segment as functions of nodal displacements (u, w), and their derivatives
(u;S; u;SS;w;S;w;SS ). Details of these derivations are shown in the Appendix.

3.2 Principal strains
The representative meridian shown in Figure 3 lies in the plane defined by the Y- and
Z-axes. In this formulation, the initial geometry of the tube is represented with a pair of

Figure 3.
Representative meridian

for axisymmetric case
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Y-Z coordinates defining the meridian line. The meridian is then subdivided into a
number of straight shell segments, with each segment defined using two nodes.

The kinematics, strains and curvature expressions for a straight shell segment
under axisymmetric loading are defined here. For the straight segment shown in
Figure 4 the local coordinates of the segment are s along the segment and z in the
through-thickness direction. The initial segment geometry is defined by the location
of the point s ¼ 0 given by Y0 and Z0, the orientation angle u the length lo and the
thickness t of the segment. The position z ¼ 0 is located at the mid-surface of
the straight segment, indicated by the dashed line. The displacement components of the
mid-surface are u and w along the original s and z directions, respectively.

The angle of rotation b between the current normal vector
~
n̂ and the original normal

vector
~
N̂ could be approximated as (see Appendix):

sinb < b ¼ 2
w;Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ w2
;S

q ð13Þ

The validity of equation (13) will be tested by comparing the deformed shape as well as
predicted hoop and axial strains of a bulged tube with similar results obtained with
ABAQUS using the nonlinear axisymmetric (SAX1) and shell elements (S4R).

The total axial strain 1s through-the-thickness of the tube is given by:

1s ¼ 10
s þ ksz ð14Þ

where 10
s is the axial strain of the mid-surface of the shell given by (see Appendix):

10
s ¼ u;S þ

1

2
u2
;S þ w2

;S

� �
ð15Þ

and the local curvature ks due to bending of the shell about the X-axis, is given by:

ks ¼
w;SS

1 þ w2
;S

� �3=2
ð16Þ

The total strain in the circumferential (hoop) direction is given by:

Figure 4.
The general description of
the geometry of a straight
segment
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1r ¼ 10
r þ krz ð17Þ

where 10
r is the hoop strain at a point on the mid-surface, which can be found from the

change in the radius of the tube as:

10
r ¼

j2 ðZ 0 þ s sin u2 z cos uÞ

r
¼

u sin u2 w cos uþ zb sin u

r
ð18Þ

where r is the original radius of the tube, and the local curvature kr , due to bending
about the Y-axis, is given by:

kr ¼ 2
1

r

›w

›S
¼ 2

w;S

r
ð19Þ

3.3 Constraints
Since, the meridian of the tube is comprised of several connected straight segments,
with their own local coordinate systems and variables, it is necessary to enforce
compatibility of deformations at junctions of two neighboring segments. The
coordinates of a point on a segment undergoing displacements u and w from the
original configuration are (Figure 4):

j ¼ Z 0 þ ðsþ uÞ sin u2 w cos uþ zð2cos uþ b sin uÞ ð20aÞ

h ¼ Y 0 þ ðsþ uÞ cos uþ w sin uþ zð sin uþ b cos uÞ ð20bÞ

Based on equations (20a) and (20b), the following three constraint equations could be
written to ensure compatibility of displacements and rotations between two
neighboring segments:

u2 cos u2 þ w2 sin u2 2 u1 cos u1 2 w1 sin u1 ¼ 0 ð21Þ

u2 sin u2 2 w2 cos u2 2 u1 sin u1 þ w1 cos u1 ¼ 0 ð22Þ

b2 2 b1 ¼ 0 ð23Þ

4. Constitutive equation
The elastic-plastic, rate-independent constitutive model implemented in the
axisymmetric formulation of tube hydroforming analysis code assumes isotropic
hardening and is based on Pourboghrat et al. (2000). The uniaxial stress-plastic strain
curve of the material is assumed to have the following power-law form:

�s ¼ Kð �1þ �1oÞ
n ð24Þ

where �s is the effective stress and �1 is the effective plastic strain. Parameters K, n and
�10 are material constants that are calculated by curve fitting equation (24) to an actual
stress-strain data measured from a uniaxial tensile test. The elastic strain increment is
related to the stress increment through the equations of linear isotropic elasticity with
Young’s modulus E and Poisson’s ratio n. The yield function given below allows for
anisotropic yielding of the material:
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f ¼
s2
s þ s2

r þ Rðss 2 srÞ
2

1 þ R
2 �s 2 ¼ 0 ð25Þ

where R is the normal anisotropy parameter.
During the loading, Hooke’s law is employed to calculate stress below the elastic

limit;, i.e. �s # sy, where sy is the initial yield stress of the tube material obtained from
a uniaxial tensile test. Beyond the elastic limit;, i.e. �s . sy, the co-rotational time
derivative of stress (Jaumann stress rate) is calculated, for a given strain rate, from an
elastic-plastic constitutive equation:

s
7

~

¼
~
L2

~
L :

~
P

~
P :

~
L

h ~
P :

~
s

�s
þ

~
P :

~
L :

~
P

2
4

3
5 :

~
D ð26Þ

Here s
7

~
and

~
Dð¼

~
De þ

~
DpÞ are the Jaumann rate of stress and strain rate tensors,

respectively,
~
s is the stress tensor, hð¼ › �s=› �1Þ is the plastic hardening parameter,

~
L is

the fourth-order elastic tensor and
~
Pð¼ ð›f=›

~
sÞ=k›f=›

~
skÞ, where

k›f=›
~
sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
›f=›

~
s : ›f=›

~
s

q
, is the second order tensor representing the unit

normal to the flow potential. The effective plastic strain rate, associated with equation
(26), is calculated from the following expression:

_�1 ¼
~
P :

~
L :

~
P 2

~
P : s7

~

s

~
P :

~
s ~
P :

~
L :

~
P

ð27Þ

The fourth-order elastic tensor
~
Lð¼ LijklÞ used in this work is the standard tensor for

the isotropic elasticity, which has only two independent components.

5. Contact algorithm
The tube hydroforming simulation requires modeling the frictional contact between
the tube and the die. The contact analysis is complex because it requires accurate
tracking of the motion of multiple bodies, and the motion due to the interaction of these
bodies after the contact. The numerical objectives are to detect the motion of the bodies,
apply a constraint to avoid penetration, and finally apply appropriate boundary
conditions to simulate the frictional contact behavior. Each of these objectives will be
separately described next.

5.1 Contact detection
To detect contact between the tube and the die, evenly spaced contact nodes are
initially defined along the tube cross section (e.g. at s0; s1 ¼ s0 þ Ds, etc.). During the
contact analysis, the displacement of each contact node is checked for surface
penetration, by determining whether it has crossed into the die. For this purpose, the
calculation of the tube surface normal is required, since it is used to determine which
segment on the die is closest to a potential contact node on the tube cross section. For
example, as shown in Figure 5, the closest segment on the die (i.e. Bi21Bi or BiBiþ1) to
the contact node (Ak) on the tube can be determined using the following cross-product:
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If :
!

AkBi £ n̂
� �

·
!

AkBiþ1 £ n̂
� �

, 0 ð28Þ

then, BiBiþ1 will be the die segment associated with the contact node Ak.

5.2 Projection algorithm
A nodal position produced by the trial solution may penetrate the die. By using the
cross-product algorithm, the closest segment on the die corresponding to the contact
node can be found. The nodal coordinates are then modified by a projection scheme
such that the contact node just touches the die surface. As shown in Figure 6, PQ is
assumed to be the die segment associated with the penetrated contact node A, point B
is the intersection point between the normal vector and PQ, and O is the original
location of the contact node. Based on the following vector equation, the coordinate of
point B could be calculated:

Figure 5.
Penetration of a contact

node on the tube into
the die

Figure 6.
The projection method for
returning the contact node

onto the die surface
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!

OP þ
!

PB ¼
!

OA þ
!

AB ð29aÞ

!
PB ¼ h1

!

PQ

k
!

PQk
;

!

AB ¼ 2h2n̂ ð29bÞ

where h1;h2 are scalar parameters. Once h1;h2 are solved for from equations (29a) and
(29b), the coordinate of point B could be determined.

5.3 Implementation of contact constraints
A contact node projected onto the die surface at time t þ Dt, is constrained to move in
the tangent direction defined by the trial solution, D

~
u*. The constraint on the

displacement vector d
~
u ¼ ðdu; dwÞ, for contacting nodes is then:

d
~
u · n̂ ¼ 0 ð30Þ

5.4 Separation of a node in contact
After a node on the tube comes into contact with the die surface, it is possible for it to
separate in a subsequent iteration or deformation increment. Mathematically, a node
should separate when the calculated reaction force between the contacting node on the
tube and the die surface becomes tensile or positive.

When contact occurs, a reaction force associated with the contact node balances the
internal stress of the element sharing this node. When separation occurs, this reaction
force behaves as a residual force (as the force on a free node should be zero). This
requires that the internal stresses in the deformable body be redistributed.

6. Equilibrium equation
The equilibrium equation is satisfied based on the virtual work principle. Unlike the
traditional finite element method, nodal displacements in this formulation are
approximated with Fourier series. The axial stroke is incorporated using Lagrange
multipliers. Contact constraints and boundary friction condition (discussed in Section
5) are introduced into the formulation in the form of penalty functions, which imposes
those constraints directly into the tangent stiffness matrix. The Newton-Raphson
algorithm is used to iteratively solve the nonlinear equilibrium equations. The
equilibrium equations associated with four types of loading commonly used in tube
hydroforming, i.e. pressure loading, axial force, displacement stroke and frictional
contact, will be described next.

6.1 Pressure loading model
Based on the kinematics and constitutive equations discussed in Sections 2-4, the
principle of virtual work takes the following form for pressure loading:

XI
i¼1

Z
L i

si
sd1

i
s þ si

ri
d1iri

� �
r idLi þ

XJ
j¼1

ljdCj ¼ dWP
Ext ð31Þ

where I is total number of straight segments along the tube length (meridian), J is total
number of constraint equations, lj are Lagrange multipliers, Cj are constraint
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equations (21)-(23), dWP
Ext is the virtual work due to external force (pressure), dLi is the

incremental length for the straight segment, and r i is the current radius of the segment.
The total displacement components wi; ui for each straight segment, as measured from
the original configuration, are approximated using the following Fourier series
expressions:

wi ¼ ai
0 þ

XN i

n¼1

ai
n cos

npsi

l0i
þ
XN i

n¼1

bi
n sin

npsi

l0i
ð32aÞ

ui ¼ gi
0 þ

XN i

n¼1

gi
n cos

npsi

l0i
þ
XN i

n¼1

din sin
npsi

l0i
ð32bÞ

where ao;an;bn; go; gn; dn are the unknown series coefficients and si; l
0
i represent the

location of a point on the undeformed straight segment on the meridian and the
original length of the straight segment,, respectively, (Figure 4). Then, Dwi and Dui

representing the incremental displacement components of a material point (Y) on the
mid-surface, measured between times t (current) and ot (reference) (Figure 2), could be
defined as:

Dwi ¼ wiðY ; tÞ2 wiðY ;o tÞ ¼ Dai
0 þ

XN i

n¼1

Dai
n cos

npsi

l0i
þ
XN i

n¼1

Dbi
n sin

npsi

l0i
ð32cÞ

Dui ¼ u iðY ; tÞ2 uiðY ;o tÞ ¼ Dgi
0 þ

XN i

n¼1

Dgi
n cos

npsi

l0i
þ
XN i

n¼1

Ddin sin
npsi

l0i
ð32dÞ

where Dao;Dan;Dbn;Dgo;Dgn;Ddn are unknown incremental changes in the series
coefficients to be calculated. By substituting from equations (32a-b) or (32c-d) into the
principle of virtual work, equation (31), a nonlinear expression of the following form
will result:

f ð
~
c;PÞ ¼ 0 ð33aÞ

where

~
c ¼ ai

0;a
i
n;b

i
n; g

i
0; g

i
n; d

i
n; lj

� �
ð33bÞ

Equation (33a) is then solved for the unknown vector d
~
c for given values of pressure P.

Since, equation (33a) is highly nonlinear, it will be iteratively solved by the
Newton-Raphson method. The Newton-Raphson iterative method used to solve d

~
c will

look like:

½<K�½d
~
c� ¼

~
F

Ext
2

~
F

Int
ð34Þ

where (<Kð¼ ›2W Int=›
~
c›

~
cÞ) is the second derivative of the virtual internal work with

respect to
~
c; d

~
c ¼ Dai

0;Da
i
n;Db

i
n;Dg

i
0;Dg

i
n;Dd

i
n;Dlj

� �
;F

~
Extð¼ ›WExt=›

~
cÞ, is the
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derivative of the virtual external work with respect to
~
c, and F

~
Intð¼ ›W Int=›,cÞ

is the derivative of the virtual internal work with respect to
~
c. The nodal force

~
Fð¼

~
F

Int
ð›

~
c=›

~
uÞÞ can be calculated from

~
F

Int
and ›

~
u=›

~
c. It should be noted that the

derivatives with respect to
~
c and d

~
c yield the same result.

Pressure loading is modeled as an external force to expand the tube. The external
work done by a pressure p applied to the inside of the tube is equal to:

dWP
Ext ¼

XI
i¼1

Z
Li
p

pn̂ idðD
~
uiÞr idLi

p ¼
XI
i¼1

Z
Lip

pn̂ i ›ðDu
iÞ

›
~
c

d
~
cr idLi

p ð35Þ

where dðD
~
uiÞ is the incremental virtual displacement vector having two components

dðDwiÞ and dðDu iÞ; n̂ i is the unit outward normal to the segment Li
p.

The variation of the virtual external work, equation (35), with respect to
~
c is:

~
FP

Ext
¼ p
XI
i¼1

Z
L i

n̂ i
›ðD

~
uiÞ

›
~
c

r idLi
p ð36Þ

Owing to the follower forces effect (Hibbitt, 1979), the load stiffness matrix is:

<K
P

Ext
¼ p
XI
i¼1

Z
Li
p

›ðn̂ iÞ

›
~
c

›ðD
~
uiÞ

›
~
c

þ n̂ i
›2ðD

~
uiÞ

›2

~
c

 !
r idLi

p ð37Þ

equations (36) and (37) will appear on the right-hand and left-hand side of the
Newton-Raphson expression, equation (34), respectively, namely:

<K þ <K
p

Ext

� �
½d

~
c� ¼

~
F

Ext
þ

~
Fp

Ext
2

~
F

Int
ð38Þ

.

6.2 Axial loading model
Simultaneous application of axial force with internal pressure is critical to improving
material shaping abilities for deeper draw configurations and higher expansion in
localized regions. Axial compressive feed F is modeled as an external force applied to
both ends of the tube as follows:

dWA
Ext ¼ ð21ÞkFt̂ idðD

~
uiÞ
���i¼nseg;k¼1

i¼1;k¼0
¼ ð21ÞkFt̂ i

›ðDu iÞ

›
~
c

d
~
c

�����
i¼nseg;k¼1

i¼1;k¼0

ð39Þ

where t̂ i is the unit tangent vector along the segment Li
p and nseg is total number of

segments. Since, the force is compressive at both ends, when i ¼ 1 (i.e. first segment),
k ¼ 0, and when i ¼ nseg (i.e. last segment), k ¼ 1.

6.3 Displacement stroke model
The displacement stroke at both ends of the tube is included in the equilibrium
equation using Lagrange Multiplier technique. The axial stroke is specified in the u
direction, along the length of the tube.
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For the left end of the tube (i ¼ 1):

ujs¼0;i¼1¼ u* ) gi
0 þ

XN i

n¼1

gi
n cos

npsi

l0i
þ
XN i

n¼1

din sin
npsi

l0i

 !�����
s¼0;i¼1

¼ u*

) g1
0 þ

XN 1

n¼1

g1
n ¼ u* ) g1

0 þ
XN 1

n¼1

g1
n 2 u* ¼ 0

ð40Þ

For the right end of the tube (i ¼ nseg):

ujs¼l;i¼nseg¼ 2u*

) gi
0 þ

XN i

n¼1

gi
n cos

npsi

l0i
þ
XN i

n¼1

din sin
npsi

l0i

 !�����
s¼l;i¼nseg

¼ 2u*

) g
nseg
0 þ

XN nseg

n¼1

ð21Þngnseg
n ¼ 2u* ) g

nseg
0 þ

XN nseg1

n¼1

ð21Þngnseg
n þ u* ¼ 0

ð41Þ

Equations (40) and (41) are incorporated into the equilibrium equation using two
Lagrange multipliers.

6.4 Frictional contact model
To model the tube-die frictional contact correctly, the following two conditions are
checked during equilibrium iteration:

(1) penetration of the tube nodes into the die; and

(2) nodal contact forces becoming tensile at the contact boundary (separation).

Once the penetration of the contact nodes into the die has been detected, the penetrated
nodes are returned to the die surface and constrained to stay on the die surface for the
remainder of the equilibrium iterations. The nodes, which are returned to the die
surface, are constrained to move only tangent to the die surface and only condition 2
stated above could cause the contacting node to be separated from the die surface.
Figure 7 shows the schematic of a typical contact check during the Newton-Raphson
equilibrium iteration.

The external work done by the frictional contact is added into the virtual work
principle, equation (31), as following:
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XI
i¼1

Z
L i

si
sd1

i
s þ si

ri
d1iri

� �
r idL i þ

XJþ2

j¼1

ljdCj ¼

21ÞkFt̂ idðD
~
uiÞ

� ���i¼nseg;k¼1

i¼1;k¼0
þ p
XI
i¼1

Z
L i

n̂ i
›ðD

~
uiÞ

›
~
c

r idLi
p

þ
XI
i¼1

Z
L i

tidðD
~
uiÞr idLi

p

ð42Þ

where ti is the traction on the surface of the tube and dðD
~
uiÞ is the virtual incremental

displacement of the contacting nodes. The two extra Lagrange multipliers lj account
for the displacement strokes at the two ends of the tube.

7. Numerical algorithm
In order to improve convergence, a special algorithm is introduced (Figure 8). For every
load increment, the non-penetration contact condition is checked initially. If contact is
detected, contact nodes on the tube meridian are projected onto the die surface along
the normal vector. The trial displacements are next updated based on Newton-Raphson
procedure. For each trial set of contacting and non-contacting nodes, equilibrium
iteration is performed. Within this force equilibrium iteration, the internal force is
calculated. The signs of the sheet normal force at contact points are checked so that the
nodes having non-compressive force are released. After equilibrium is satisfied, the

Figure 7.
A schematic of tube-die
contact check
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strains and stresses are updated and failure based on FLC fracture criteria is checked.
The program stops when maximum load step is reached or failure is detected.

8. Fracture criteria
FLC equations based on the onset of shear instability and experimental measurements
are incorporated into the program as fracture criteria to detect the onset of failure. The
FLC based on the onset of local shear instability, using Hosford yield criterion and
critical shear stress under plane strain (Lee and Kim, 1989), is given by:

1*1 ¼ 22 1=nð Þ 1 þ
1

jbj

	 
a

þR 1 2
1

b

����
����
a� �ðna2n21Þ=na

1 þ R 1 2
1

b

	 
21

1 2
1

b

����
����
a

" #21

ð1 þ jaj
a
þ Rj1 2 aj

a
Þð12naþnÞ=na½1 þ Rð1 2 aÞ21j1 2 aj

a
�ð2 þ rÞ1=n

ð1 þ rÞ21=2n 1*1p

� �
ð43Þ

where parameters a, r, b, a, n, R, 1*1 and 1*1p are defined in the Nomenclature.

Figure 8.
Flow chart for AXHD

program
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The effects of thickness, surface roughness and strain gradient through the thickness
are not accounted for in the above equation.

9. Numerical results
The AXHD (Axisymmetric Hydroforming) program has been written and validated
with experimental data and ABAQUS finite element model using the following two
examples. In each example, due to the lack of experimental data, a friction coefficient of
0.1 was used to account for the frictional contact between the tube and the die corner.
Also, in these examples the sensitivity of the result to the value of the friction
coefficient was not studied.

9.1 Bulging of an anisotropic aluminum tube
This example concerns the bulging of a straight aluminum tube using an Interlaken
tube hydroforming press at Michigan State University. The aluminum tube used in the
bulging experiment was 8.0 in. (203 mm) long, and had an outside diameter of 2.0 in.
(50.8 mm), and a wall thickness of 0.049 in. (1.24 mm). The measured mechanical
properties for the aluminum 6061-T4 tube are given in Table I. In the bulging test, the
straight tube was first placed horizontally into the bottom die cavity and then steel
plungers were inserted from each side to seal the two ends of the tube. Upon closing the
top die, the tube was clamped and then filled with water. The goal of the experiment
was to linearly increase the fluid pressure inside the aluminum tube to a maximum
value of 2,030 psi, while axially compressing the two ends of the tube. This
pressure-axial stroke loading condition was by no means an optimized one, but was
rather found to work well for this geometry by running several bulging tests. While it
was possible with good control to linearly increase the fluid pressure to its maximum
value of 2,030 psi, it was not possible to apply equal amount of axial stroke to the ends
of the tube during the bulging experiment. At the end of the bulging process, the length
of the deformed tube was measured again and it was found to be 0.236 in. (6.0 mm)
shorter than its original length of 8.0 in.. It is believed that this shortening in the length
of the tube was caused by a combination of the axial feed action (to stop fluid leaking
from the ends of the tube), and the natural draw-in of the tube as it expanded inside the
die cavity. For simplicity, however, in the numerical simulations with AXHD and
ABAQUS codes it was decided to apply an equal amount of 0.118 in. (3.0 mm) axial
stroke to each end of the tube.

The deformed shape and strain results obtained from the AXHD code (written
based on current formulation) were compared with the results of the commercial FEM
code ABAQUS and experimental measurements. To assess the effect of the anisotropy
of the aluminum tube on strain distribution along the length of the tube, the ABAQUS
FEM code was run with the following yield functions:

. von Mises (isotropic); and

. Hill (1948) (transverse anisotropy)

Material type
Young’s modulus
(psi) Poisson ratio

Yield stress
(psi) R-value

K-value
(psi) N-value 10

Aluminum 6061-T4 1.03 £ 107 0.33 18,730 0.82 69,183 0.2646 0.0
Steel DP600 3.15 £ 107 0.3 51,040 1.0 143,260 0.182 0.0

Table I.
Material properties of the
aluminum and steel tubes
used in the simulations
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All finite element simulations were performed with ABAQUS/Explicit code, using
plane stress axisymmetric (SAX1) and four-node shell elements with reduced
integration (S4R). Figure 9 shows the intermediate shapes of the deformed tube
predicted by the AXHD code at various internal pressure levels. Table II shows the
information about the number of Fourier series terms, Gauss integration points, and
contact points used in these simulations. Similar to the experiment, the tube was
pressurized to the maximum pressure level of 2,030 psi while being axially compressed
by a maximum stroke of 0.118 in. (3.0 mm) at each end. The predicted deformed shape
of the tube at the maximum pressure of 2,030 psi was compared against the actual
deformed shape of the tube. The maximum radius of the deformed tube was predicted
to be 1.17 in. (29.72 mm), while that of the actual tube was measured to be 1.22 in.
(31.0 mm). This corresponds to an underestimation of 4.1 percent for the maximum
deformed tube radius.

Corresponding distribution of hoop and axial strains along the length of the tube are
shown in Figures 10 and 11. As expected, the maximum hoop and axial strains occur in
the middle of the bulged tube and they are 17.54 and 27.4 percent, respectively.

Figure 9.
Tube radius vs length at

different bulging pressure.
The aluminum 6061-T4
tube had the following

dimensions: to ¼ 0.049 in.
(1.24 mm), do ¼ 2.0 in.
(50.8 mm), Lo ¼ 8.0 in.

(203 mm)

Material
type

Nos.
straight
elements

Nos. terms in
displacement

series
Nos. gauss points
along the segment

Nos. gauss points
through the

thickness

Nos. contact
points per
segment

Aluminum
6061-T4 8 and 12 5 10 5 41
Steel
DP600 8 6 12 7 41

Table II.
Fourier series terms,

gauss integration points
and contact points used

in AXHD
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Figure 12 shows the history of the thinning of the tube at the maximum bulge point
(middle of the tube) as a function of the applied pressure. Thinning of the tube
accelerates exponentially beyond the pressure level of 1,000 psi. The thinning strain at
the pressure level of 2,030 psi is around 10 percent.

Figures 13 and 14 show a comparison of hoop and axial strain distributions
predicted with AXHD and ABAQUS/Explicit code using the nonlinear axisymmetric
element (SAX1) and four-node shell element with reduced integration (S4R). The
number of SAX1 elements used for the axisymmetric analysis was 80 while that for
S4R elements was 1,176. The hoop strain distribution predicted by the AXHD code,

Figure 10.
Hoop strain along the tube
length at different bulging
pressures (aluminum)

Figure 11.
Axial strain along the tube
length at different bulging
pressures (aluminum)
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using eight straight segments, matches those of ABAQUS very well, despite the fact
that a S4R shell element takes into account shear deformation. The axial strain
distribution predicted by the AXHD code matches those of ABAQUS very well too.
The two spikes (at ^1.65 in.) shown in Figure 14 for the ABAQUS code are attributed
to the tube-die contact in the region where the die cavity starts (Figure 9). In this region
the tube bends over the die radius and develops a large axial strain. There is a slight
discrepancy between ABAQUS and AXHD code predictions in this region. This could
partly be attributed to neglecting u,S and u,SS terms in the axial curvature equation
(equation (A10) in Appendix), which lead to the more simplified expression for the

Figure 12.
Thickness vs pressure (at

maximum bulge point)

Figure 13.
Hoop strain (AXHD vs

ABAQUS/Explicit)

Fourier series
based finite

element analysis

717



www.manaraa.com

axial curvature in equation (16). However, by increasing the number of straight
segments used in the AXHD code from 8 to 12, this spike in the axial strain was better
captured. This implies that due to the small radius of the die corner more straight
segments were needed in order to accurately capture the strain gradient in the curved
region of the tube.

Figure 15 shows a comparison of the measured and predicted hoop strain
distributions. In the numerical simulations isotropic and transversely anisotropic
material models were assumed. Hill’s yield criterion accounting for the transverse
anisotropy, equation (25), was used with ABAQUS’ SAX1 and S4R shell elements and

Figure 14.
Axial strain (AXHD vs
ABAQUS/Explicit)

Figure 15.
Hoop strain predictions
with ABAQUS using
different yield functions
and elements and
comparison with
experimental strains
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compared with AXHD results. As expected, the isotropic material model (von Mises)
significantly underestimated the magnitude of the maximum hoop strain (14.9
percent). Those models (Hill’s SAX1, S4R and AXHD) accounting for the transverse
anisotropy of the tube predicted a maximum strain of 17.4 percent, which was a drastic
improvement over the von Mises’ prediction. Despite the improvement, all three models
underestimated the measured maximum hoop strain of 20 percent. Plate 1 shows the
deformed aluminum tube after the bulging experiment.

The large difference observed between the experimental and FEA results in
Figure 15 could be attributed to several factors, of which the most significant is the
planar anisotropy of the extruded aluminum tube. This will be verified in the future by
using Barlat Yld96 yield function (Barlat et al., 1997) to model tube bulging. A second
explanation would be that the maximum attainable pressure in the tube hydroforming
equipment was 30,000 psi, while the bulging pressure for the aluminum tube was only
2,030 psi. Therefore, a small error of only 0.5 percent (150 psi) in the pressure reading
from the equipment could have caused a significant change in strain and deformation
results. That is, the actual pressure being somewhat larger than 2,030 psi could have
caused a large discrepancy in the experimentally measured strain results. A third
explanation would be that the 3 mm axial feed per side boundary condition used in the
simulations may have been larger than the actual axial feed in the bulged tube. If true,
this would certainly cause an underestimation in the predicted maximum hoop strain.
Finally, the slight shift to the left in the experimental curve, in Figure 15, could have
been caused by an uneven application of the axial feed to the two ends of the bulged
tube during the experiment. Next, the bulging of an isotropic steel tube will be
discussed to better assess the accuracy of the formulation.

Plate 1.
Axisymmetrically bulged

aluminum tube using
2,030 psi internal pressure
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9.2 Bulging of an isotropic steel tube
This example is concerned with the optimized bulging of an isotropic straight steel
tube under controlled pressure and displacement stroke. The steel tube is 8.66 in.
(220 mm) long with an outside diameter of 2.36 in. (60 mm) and with a wall thickness of
0.05787 in. (1.47 mm). The material properties for the hot-dip galvanized DP600
(HG/Z140) steel tube are given in Table I.

The axial stroke vs pressure loading history and experimental results for this
simulation are obtained from Asnafi (1999). The FLC, based on the onset of shear
instability (Lee and Kim, 1989) and experimental measurements (Asnafi, 1999; Asnafi
and Skogsgardh, 2000) are also used as fracture criteria. As shown in the figures
described below, the simulation results from the AXHD code are in close agreement
with the experimental results reported by Asnafi (1999) and Asnafi and Skogsgardh
(2000) for this isotropic material.

Figure 16 shows the intermediate shapes of the bulged steel tube at various internal
pressure levels. Those deformed shapes were predicted by the AXHD code using 12
straight elements and the displacement stroke-internal pressure history shown in
Figure 17, obtained from the analytical equations given by Asnafi (1999) in order to
maintain a proportional axial to hoop strain ratio of 20.5. The final displacement
stroke was 0.24 in. (6.1 mm) at the maximum pressure level of 5,220 psi in the tube
bulging process.

Figures 18 through 20 show the predictions of the evolution of hoop strain, axial
strain and the maximum thickness reduction as a function of the internal pressure by
the AXHD code. The maximum thickness strain at the maximum pressure level of
5,220 psi is 15.57 percent. The maximum hoop and axial strains predicted by the
AXHD code were 28 and 210.9 percent, respectively. These predicted values

Figure 16.
Intermediate shapes of the
bulged steel tube.
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compared very well with the measured hoop and axial strains of 29 and 210 percent
reported by Asnafi (1999) and Asnafi and Skogsgardh (2000).

Finally, Figure 21 shows the major and minor strains predicted by the AXHD code
along the length of the hydroformed steel tube at the maximum pressure of 5,220 psi.
These predicted strains are compared with the experimentally measured forming limit
strains reported by Asnafi (1999) and the FLC calculated based on the shear instability

Figure 17.
Pressure vs axial feed
(stroke) curve used for
bulging the steel tube

Figure 18.
Hoop strain along the tube
length at different bulging

pressures (steel)
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criterion (Lee and Kim, 1989). FLCs correspond to the maximum strains that a material
can safely undergo prior to failure (e.g. tearing) under various deformation conditions.
Referring to Asnafi’s FLC in Figure 21, it is clear that the steel tube will cross the FLC
and fail by tearing once major and minor strains reach about 0.30 and 20.11,
respectively. The FLC curve based on the shear instability however predicts major and
minor strains of about 0.325 and 20.11 prior to tearing. For engineering design it is
better to use the more conservative curve. Overall, it seems that the FLC is a useful tool
for estimating the critical strains at the onset of fracture for isotropic steel tubes.

Figure 19.
Axial strain along the tube
length at different bulging
pressures (steel)

Figure 20.
Thickness vs pressure (at
maximum bulge point)
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10. Conclusions
In the present study, an axisymmetric tube hydroforming finite element analysis
program was developed. Fourier series interpolation functions, which reduce the size of
the global stiffness matrix and the number of variables considerably, were employed
for approximating the displacements. The computer program (AXHD) written based
on this formulation is very efficient in predicting the deformations for the free-forming
stage of tube hydroforming under simultaneous action of internal pressure and
displacement stroke. Failure model (FLC) based on shear instability was incorporated
into the code to predict the onset of fracture for the steel tube. The hoop and axial
strains predicted with AXHD code compared excellently with those from ABAQUS
FEM code using plane stress axisymmetric (SAX1) and four-node shell (S4R) elements.
However, in the case of aluminum, the numerically predicted maximum hoop strain
underestimated the actual hoop strain measured from the tube bulging experiment.
This was attributed to several factors of which the planar anisotropy of the aluminum
tube was deemed to be the most important. To verify this, simulations with planar
anisotropic yield functions are planned for the future. It is also planned to extend this
axisymmetric code to a general three-dimensional (3D) code in order to perform
post-bifurcation analysis of tube hydroforming process.
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Appendix
Using the updated Lagrangian formulation discussed in Section 2 (Shell element model), a set of
expressions were derived for the membrane strains, rotation of the normal vector, and the
principal centerline curvatures of a shell element on the meridian of the tube. By using in these
expressions the values of the displacements and curvatures of the shell at the previous time
increment (i.e. t ¼ ot), one would recover incremental values of strains. And, by using in these
expressions the values of displacements and curvatures of the shell at the initial state (i.e. t ¼ 0)
one would recover the total values of strains.

In this paper, the incremental strain is calculated by taking the difference between the total
strain at the current (t) and the previous time increment (ot) as: D1 ¼ 1ðY ; tÞ2 1ðY ;o tÞ. To
calculate the total strain from the expressions shown in Section 2, one would need to set the
original curvature of the straight segment equal to zero, i.e. K1 ¼ 0, and use for all kinematics
parameters (i.e. displacements, and their derivatives) their total values (i.e. calculated based on
their values at the current time t and t ¼ 0).

Membrane strain
For a straight segment, by setting the curvature equal to zero, K1 ¼ 0, from equation (6) the total
mid-surface stretch as a function of total displacements of the mid-surface of the shell and their
derivative with respect to s becomes:

l1 ¼ ð1 þ u;SÞ
2 þ w2

;S

h i1=2

¼ 1 þ u2
;S þ 2u;S þ w2

;S

h i1=2

ðA1Þ

or,

l2
1 ¼ 1 þ u2

;S þ 2u;S þ w2
;S ðA2Þ
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By substituting l1 ¼ 1 þ 1os into equation (A2), the following expression will result:

1os þ
1

2
1os
� �2

¼ u;S þ
1

2
u2
;S þ w2

;S

� �
ðA3Þ

The above quadratic expression should be solved in order to obtain the mid-surface total
strain,1os , as a function of the derivative of the mid-surface displacements. A simpler expression
for 1os was found by simply dropping the quadratic term 1=2ð1os Þ

2:

1os < u;S þ
1

2
u2
;S þ w2

;S

� �
ðA4Þ

Equation (A4) was found to be much easier to program into a code. The table below shows the
magnitude of the overestimation of the actual 1os when equation (A4) is used instead of equation
(A3) (Table AI):

It could be seen from this table that the percent of the overestimation of 1os gradually
increases with the magnitude of the total strain.

The total true strain for any layer through the thickness of the tube is:

1sðzÞ ¼ 1os þ zks ðA5Þ

where ks is given by equation (12) when K1 ¼ 0.

Rotation of normal vector
We assume that the angle between the current normal vector

~
n̂ and S (arc length) to be a, and the

angle between the current normal vector
~
n̂ and reference normal vector

~
N̂ to be b (Figures 2

and 4). Then we have:

bþ
p

2
¼ a;

~
n̂ ·

~
Â ¼ cosa ¼ 2sinb ðA6Þ

Substituting equation (8) in Section 2 into equation (A6), we obtain:

sinb ¼
d

l1
¼

w;S þ K1u

l1
¼

w;S þ K1uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ u;S 2 K1wÞ

2 þ ðw;S þ K1uÞ
2

q ðA7Þ

For a straight line segment (K1 ¼ 0), by assuming that ð1 þ u;SÞ < 1 and b is small, we get:

sinb < b ¼
w;Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ w2
;S

q ðA8Þ

As shown in Figure 4, if the positive w direction is in the opposite direction of the normal vector
to the mid-surface, n̂, then w,S should be replaced with 2w;s.

1os from equation (A4) *1os from equation (A3) d ¼ 1os 2
*
1os d=*1os (percent)

0.001 0.0009995 5 £ 27 0.05
0.01 0.009951 4.9 £ 25 0.5
0.05 0.0488 1.2 £ 23 2.5
0.10 0.0954 4.6 £ 23 4.8
0.20 0.1832 1.68 £ 22 9.2
0.25 0.2247 2.53 £ 22 11.3
0.30 0.2649 3.51 £ 22 13.3 Table AI.
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The current principal centerline curvature
For a straight segment (K1 ¼ 0), the centerline curvature at the current configuration, kx, will be
obtained from equation (12) in Section 2:

kx ¼
cd;S 2 dc;S

l3
1

¼
ð1 þ u;SÞw;SS 2 w;Su;SS

l3
1

ðA9Þ

By assuming that 1 þ u;S < 1 and u;SS < 0, equation (A9) could be approximated as:

kx <
w;SS

1 þ w2
;S

� �3=2
ðA10Þ

Given the opposite direction of the normal vector to the mid-surface, w;ss in equation (A10) should
be replaced with 2w;ss.
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